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ABSTRACT
Low-cost and accurate indoor location information can add spa-
tiotemporal context to information systems, enabling new location-
aware applications. Time-of-Flight (ToF)-based acoustic localization
using speakers and microphones allows for localization accuracy
within a few tens of centimeters, outperforming RF-based tech-
niques. However, ToF-based localization requires synchronization
between the speaker and microphone, i.e., the time offset between
them must be known. Previous time offset estimation methods
required custom hardware for speakers, limiting their practical
use. Estimating the time offset using a single, unmodified speaker
is essential for leveraging widely deployed speakers and enhanc-
ing coverage. This paper presents the first method for time offset
estimation using a single speaker and a microphone, enabled by
two key factors: (i) a time offset computation method that utilizes
higher-order floor-ceiling reflections as multiple geometrically-
constrained virtual speakers, and (ii) a signal processing pipeline
that isolates these critical reflections from numerous others by
leveraging the speaker’s frequency-dependent radiation pattern.
Experiments show that the proposed technique can achieve time
offset estimation with a 90th percentile error of 259 𝜇s at a 5 m
distance. Furthermore, we implemented a ToF localization system
based on SyncEcho, demonstrating a 11.0 cm localization accuracy
with a 90th percentile error.

CCS CONCEPTS
• Networks → Location based services; • Human-centered
computing → Ubiquitous computing.
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Figure 1: Overview of SyncEcho. SyncEcho uses vertical
higher-order reflections of acoustic signals to estimate the
time offset between the speaker and a microphone needed
for ToF ranging.
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1 INTRODUCTION
Indoor location information provides critical context to informa-
tion systems, and developing low-cost and accurate localization
systems using existing infrastructure will accelerate the deploy-
ment of ubiquitous computing applications. The widespread use
of mobile devices motivates and enables the development of such
location-aware applications. One useful example is indoor naviga-
tion systems for large and complex buildings (e.g., shopping malls,
offices), which cover areas unreachable by outdoor navigation sys-
tems. Furthermore, indoor environments produce unique needs,
including optimized building energy management [6], home/office
automation [34], and empowering new AR/VR applications [40].
Based on these emerging needs, the market value of indoor location
information is expected to exceed 29.8 billion dollars by 2028 [22],
reinforcing the great demand for indoor positioning technology.
However, the complex and enclosed nature of indoor environments
prevents one-fits-all solutions; for instance, global navigation satel-
lite systems (GNSS), which cover most cases for outdoor navigation,
lack feasibility because GNSS signals do not reach many indoor
environments.

These needs and the commodification of mobile and wearable
devices led to the investigation of many indoor localization tech-
nologies. Existing approaches include, radio frequency (RF)-based
approaches such as Wi-Fi [14], Bluetooth low energy (BLE) [13], Ul-
tra wide band (UWB) [10], radio-frequency identification (RFID) [7],
visible light-based approaches [16], and acoustic localization [12].
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Table 1: Smartphone-based time offset estimation methods for acoustic ranging

Principle Additional hardware Multiple speakers Accuracy [𝜇s]

Dedicated hardware [30] Modulated LED None 17.4 (1 m distance, 90th percentile)
RToF-based [33] Microphone None 1.9 (3 m distance, average)
TDoA-based [17] None Four 720 (4.5 m × 5.5 m area, average)

SyncEcho None None 259 (5 m distance, 90th percentile)

Among them, our work is based on acoustic localization using
speakers, which has two major advantages:

(1) Ubiquity and compatibility: Announcement and music
speakers are commonly found in indoor commercial and
residential spaces. Additionally, most smartphones have mi-
crophones. This infrastructure allows for indoor positioning
without the need for dedicated hardware.

(2) Accurate ranging with generic hardware: The relatively
slow speed of sound waves compared to RF signals enables
accurate position estimation based on the time of arrival,
using generic hardware.

1.1 Challenge: Time Offset Estimation
In acoustic localization, the time of flight (ToF)—the time difference
between the speaker emitting sound and the microphone receiving
it—is preferred for its high-accuracy ranging capability. Further-
more, unlike the time difference of arrival (TDoA) [12, 18, 35], which
requires constant access to multiple speakers to gain any location
information, ToF independently performs ranging by each speaker,
which is later aggregated to compute location. This feature remark-
ably improves the robustness of localization because it significantly
mitigates the requirements of the speaker-microphone position re-
lationship and, importantly, can allow localization with a minimal
number of speakers by leveraging geometrical features inherent to
indoor environments (see Fig. 2).

Estimating the time offset between the speakers and microphone
accurately, easily, and robustly is one of the most critical challenges
when implementing a ToF localization system. Accurate ToF lo-
calization requires microsecond-order synchronization between
the speakers and the microphone. However, once this time offset
is estimated, ToF ranging between all speaker-microphone pairs
is enabled, allowing robust and accurate localization. Thus, easily
deployable time-offset estimation systems are critical for enhancing
the utility of ToF localization.

Currently, time-offset estimation methods, including round-trip
time of flight (RToF)-based [33], TDoA-based [17], and dedicated
hardware-based approaches [30], have significant limitations. RToF
approaches require the installation of speaker-microphone setups
that raise privacy concerns, especially in public spaces. TDoA ap-
proaches need many speakers, increasing deployment costs. Ap-
proaches using dedicated hardware, such as additional LEDs, present
cost and complexity challenges. As shown in Table 1, existing meth-
ods require additional hardware or multiple speakers, highlighting
the significant challenge of developing a microsecond-order time
offset estimation using a single, unmodified speaker.

Figure 2: Example usage scenarios of SyncEcho. (a) The sys-
tem can detect position in narrow environments (e.g., corri-
dors and train platforms) based on ToF ranging. (b) SyncEcho
can also detect 2-D or 3-D positions using multiple speakers.

1.2 Our Approach
This paper proposes SyncEcho, the first approach to estimate time
offset using a single ceiling speaker. The design of SyncEcho is
based on the two following insights. Firstly, reflected signals can
be perceived as signals from “mirror” virtual speakers located on
the opposite side of the reflector. Higher-order reflections via the
floor and ceiling from a ceiling-mounted speaker can be treated as
virtual speakers aligned on a line perpendicular to the floor, and the
distance between these virtual speakers and the microphone can be
formulated by three unknowns, including the time offset. Secondly,
considering a ceiling-mounted speaker, the radiation angle of the
higher-order reflection signals via the floor and ceiling becomes
smaller, mitigating the decay of signal intensity with increased
order of reflections. Conversely, the radiation angle of the reflected
signals via the wall becomes larger, showing a steep decay of signal
intensity with increased order of reflections.

Based on our findings on the radiation angle characteristics of
higher-order reflection signals and our observations on the fre-
quency dependency of speaker directivity, SyncEcho identifies first-
to third-order reflected signals via the floor and ceiling by transmit-
ting a high-frequency chirp signal from a speaker facing the floor.
SyncEcho estimates the time offset using the direct signal and these
signals (see Fig. 1). This design makes SyncEcho compatible with
widely adopted in-ceiling speakers facing the floor. Such speaker
systems are widely used in both commercial and residential spaces
for their aesthetic appeal and ability to distribute sound evenly
throughout the room [31].

The high-frequency chirp signal that SyncEcho uses is also un-
obtrusive to most people, ensuring a pleasant acoustic environment.
Finally, the estimated time offset remains valid for tens of minutes
before the drift error becomes significant; thus, ToF localization
can be maintained as long as the user passes through areas where
SyncEcho is available at least once during this period.
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Our contributions are summarized in the following:
• To the best of our knowledge, SyncEcho is the first ap-
proach that can estimate the time offset using a single,
unmodified speaker. It leverages vertical higher-order re-
flections via the floor and ceiling to compute the time offset
between the speaker and microphone, enabling ToF local-
ization. We assessed its performance under various settings,
and the results indicate that SyncEcho achieves a 90th per-
centile error of 259 𝜇s. Furthermore, SyncEcho-based ToF
localization achieves a 90th percentile error of 11.0 cm.

• We explore the properties of higher-order reflection signals
and the system design that enhances the required signals.
Our investigations revealed that utilizing high-frequency
signals from speakers facing the floor boosts the SNR of
vertical higher-order reflected signals underpinned by the
frequency characteristics of the speaker’s radiation angle.We
verified the consistency and reproducibility of this feature
by experimenting with three different speakers.

• SyncEcho identifies vertical higher-order reflected signals
using a singlemicrophone. To achieve this, we design a signal
processing pipeline utilizing the geometric constraints and
successfully identify the needed high-order reflection out of
numerous candidate signals.

2 RELATEDWORK
2.1 Acoustic Ranging/Localization
Here, we introduce relevant acoustic ranging/localization tech-
niques to highlight the advantages of SyncEcho in terms of usage
scenarios. Accurate time offset estimation using smartphones is
known to be challenging [17], making ToF-based localization [11,
27] with smartphones difficult. Consequently, most acoustic local-
ization research is oriented toward developing (i) time synchronization-
free localization techniques that do not require time offset or (ii)
novel techniques for estimating the time offset.

2.1.1 Time Synchronization-Free Localization Techniques. RToF se-
quentially transmits and receives acoustic signals between nodes
and measures the "round trip" time to estimate the distance, requir-
ing each node to have a speaker and a microphone. BeepBeep [25]
is a representative example, estimating the distance between two
smartphones with an error below 3 cm. This approach has been
extensively studied for estimating the distance between devices
because it eliminates the influence of time offset [8, 37]. However,
its application in position estimation has not progressed signifi-
cantly because installing speakers equipped with microphones is
impractical in public spaces due to privacy concerns. Furthermore,
bidirectional communication limits the number of users [4, 10].

Other studies proposed TDoA-based approaches [12, 18, 35], and
GPS [24] is one famous example. The TDoA-based approach uses
the arrival time difference of acoustic signals transmitted from
two speakers to calculate the surface where the target is located.
TDoA requires more speakers than ToF for position estimation,
but it does not require time synchronization between the speaker
and microphone. Furthermore, unlike RToF, it does not necessitate
dedicated hardware. As a result, it is currently the most widely
applied localization technique for smartphones. However, there

are challenges, such as significant positioning errors caused by
installing speakers on the ceiling (i.e., at the same height), leading
to errors in the height direction. Additionally, acoustic signals are
frequently blocked by people and facilities, making TDoA more
prone to failure compared to ToF-based localization due to the need
for more accessible speakers.

AoA-based approaches use antenna or microphone arrays to es-
timate the angle of arrival of the transmitted signal [5, 15]. Similar
to ToF-based approaches, three anchors are typically required for
3D positioning. As these arrays physically co-exist and are synchro-
nized by hardware, it enables localization without the influence of
time offset. However, the high infrastructure requirements pose a
barrier to implementation, and the AoA approach is often used for
locating unknown sound sources [3, 28] in acoustic sensing.

2.1.2 Techniques for Estimating Time Offset. Next, we introduce
approaches for estimating time offset. SCALAR [33] estimates the
time offset between two mobile devices by exchanging acoustic
signals, similar to BeepBeep. SCALAR achieves a timing accuracy of
1.9 𝜇s by using OFDM signals and considering sampling clock drift.
This corresponds to a ranging accuracy of 0.39 mm. Sugimoto et
al. proposed a camera-based time offset estimation using optimally
modulated illumination and achieved a timing accuracy of 17.4 𝜇s at
the 90th percentile. SyncSync is a ToF-based localization system that
uses Sugimoto et al.’s approach. SyncSync uses LED-synchronized
speakers as transmitters and a smartphone built-in microphone and
camera as a receiver, achieving localization errors within 10 mm.
The time offset estimation approach closest to our SyncEcho is
Lazik et al.’s method [17]. They achieve a mean timing accuracy of
720 𝜇s by using four speakers.

SyncEcho has a clear advantage over relevant approaches in
the point that it achieves accurate time offset estimation (259 𝜇s)
using a single, unmodified speaker, which are features that no other
approach could achieve.

2.2 Multipath-Assisted Positioning
Many multipath-assist sensing techniques have been proposed in
prior work. Here, we introduce these technologies to emphasize
the technical advancement of SyncEcho in the context of multipath-
assisted positioning.

SALMA [9] is a UWB-based positioning system leveraging reflec-
tions from four walls. This system uses four directional antennas
held by an anchor to identify these reflections. VoLoc [28] and
Symphony [34] focus on estimating the position of voice inputs to
smart speakers. Given that smart speakers are typically positioned
near walls for power supply, they capitalize on the pronounced
wall reflections. BatMapper [38] and SAMS [26] transmit acous-
tic signals from smartphones and receive reflections via walls to
compute the distance to these walls and subsequently derive floor
plans. BatTracker [39], akin to BatMapper and SAMS, calculates the
distance to walls but primarily aims for relative position estimation
for tracking. EchoSpot [20] uses speakers and microphones fixed in
the environment, achieving device-free positioning by harnessing
reflections involving humans and those via both humans and walls.

To the best of our knowledge, SyncEcho is the first approach to
harness higher-order reflections, specifically those of the second
order and beyond, for positioning. Our methodology ingeniously
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capitalizes on the radiation angle characteristics of the speaker,
enhancing the SNR of the desired reflections. By exploiting the geo-
metric constraints of virtual speakers and the inherent geometric
redundancy, SyncEcho uniquely identifies reflections using a single
microphone.

3 PRINCIPLE
3.1 Time Offset Estimation Model Using

Vertical Higher-Order Reflection
SyncEcho uses higher-order reflected signals via the floor and the
ceiling to estimate 𝛿 , the time offset of the speaker relative to the mi-
crophone’s clock (Fig. 3b), with a single speaker. Here, we describe
the principle to calculate the time offset 𝛿 . Note that henceforth,
𝑛-th-order reflected signals (𝑛 ∈ {0, 1, 2, ...}) refer to signals prop-
agated via the floor and ceiling 𝑛 times, and the direct signal is
referred to as 0th-order reflected signal.

The reflected signals via the floor and the ceiling can be treated
as signals from virtual speakers located at mirror-image positions
with respect to the real speaker’s location [23] (see Fig. 3a). 𝑃0 =

(𝑥 ′, 𝑦′, 𝑧′) is the position of the speaker mounted on the ceiling,
and 𝑃𝑛 = (𝑥 ′, 𝑦′, 𝑧′𝑛) is the position of the 𝑛-th virtual speaker rep-
resenting the 𝑛-th-order reflected signal. Because virtual speakers
are at mirror-image positions, the 𝑥 and 𝑦 coordinates of all virtual
speakers match with the actual speaker. The height of the 𝑛-th
virtual speaker 𝑧′𝑛 is

𝑧′𝑛 = (−1)𝑛𝑧′ + 1
2

(
(2𝑛 − 1) (−1)𝑛 + 1

)
ℎ, (1)

where ℎ is the ceiling height, and 𝑧′ and ℎ are assumed to be known.
Note that 𝑧′ andℎ are the same value when the speaker is embedded
in the ceiling.

Fig. 3b shows the timeline of events. We denote 𝑋 = (𝑥,𝑦, 𝑧)
as the position of the microphone, 𝑡𝑛 as the time that the signal
transmitted from 𝑃𝑛 arrives at 𝑋 , and 𝐼 as the transmission interval
time. The system repeats this timeline as a cycle with duration 𝐼 .
When the signal is transmitted at 𝑡 = 0 on cycle𝑚 of the speaker’s
clock, and their signals are received on cycle𝑚′ of the microphone’s
clock as shown in Fig. 3b, the distance between the 𝑛-th virtual
speaker and the microphone can be expressed as:

| |𝑃𝑛 − 𝑋 | | =
√︃
𝑑2 + (𝑧′𝑛 − 𝑧)2 = 𝑐 (𝑡𝑛 − 𝛿), (2)

where 𝑑 =
√︁
(𝑥 ′ − 𝑥)2 + (𝑦′ − 𝑦)2 and 𝑐 is the sound speed. By

applying the least-square method to Eq. 3, we can obtain three
values, namely 𝛿 and 𝑑 , 𝑧.

𝐽 =

3∑︁
𝑛=0

𝑟𝑛 (𝛿, 𝑑, 𝑧)2, (3)

such that

𝑟𝑛 (𝛿, 𝑑, 𝑧) =
√︃
𝑑2 + (𝑧′𝑛 − 𝑧)2 − 𝑐 (𝑡𝑛 − 𝛿). (4)

Theoretically, we can calculate 𝛿 using up to second-order reflec-
tions, but SyncEcho uses up to third-order reflections to locate the
pattern of responses attributed to high-order reflections, which is
described later in §4.3.

Figure 3: (a) The virtual speaker represents the reflected sig-
nal. (b) Overview of the event timeline of SyncEcho and the
relationship with the speaker’s and the microphone’s clock.

3.2 Distinguishing Vertical and Horizontal
Reflection based on Speaker Directivity

To estimate time offset based on the described model, it is critical to
distinguish the vertical (floor/ceiling) reflections from the horizon-
tal (wall) reflections. To this end, we discovered that the speaker’s
directivity enhances the vertical higher-order reflections and di-
minishes horizontal higher-order reflections. SyncEcho leverages
this key feature to distinguish vertical and horizontal high-order
reflection.

This characteristic can be explained by observing how the signal
intensity varies with respect to (i) propagation distance, (ii) number
of reflections, and (iii) speakers’ radiation angle. Generally, acoustic
signals attenuate with (i) increasing distance and (ii) the number
of reflections; thus, due to factors (i) and (ii), the signal level de-
creases as the order of reflection increases. Regarding (iii) speakers’
radiation angle, signal intensity decreases as the radiation angle
increases for most speakers, as shown in Fig. 4a [19].

Remarkably, this directivity poses different effects on vertical
reflections and horizontal reflections. When assuming a ceiling
speaker, the radiation angle gets smaller with an increased order
of vertical reflections and larger with horizontal reflections, as
described in Fig. 4. This factor enhances vertical higher-order re-
flections and diminishes horizontal higher-order reflections.

Considering factors (i) to (iii), the vertical reflections show a slow
decay with increasing order of reflections, while the horizontal
reflections show a steep decay. SyncEcho leverages this principle
to distinguish vertical and horizontal reflections.

4 SYSTEM DESIGN
Based on the sensing principles described above, we next proceed
to the system design of SyncEcho. The design of the transmitter
signal, extraction methods of the vertical higher-order reflection
signals, the time-offset estimation process, and the sampling clock
offset correction are discussed herein.

4.1 Signal Design for Enhancing Vertical
Higher-Order Reflection

To accurately detect the propagation time of each signal, we trans-
mit a chirp signal, which is commonly used in acoustic sensing
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Figure 4: The relationship between the speaker’s directivity,
reflection order, and radiation angle: (a) Typical speakers
emit stronger signals towards smaller angles. (b) Vertical
reflections correspond to smaller angles, and (c) horizontal
reflections correspond to larger angles.

systems [2, 21, 32]. A linear chirp can be expressed as:

𝑠 (𝑡) = sin 2𝜋 (𝑓0𝑡 +
𝑘

2 𝑡
2), (5)

𝑘 =
𝑓1 − 𝑓0
𝑇

,

where 𝑓0 is the start frequency, 𝑓1 is the end frequency, and𝑇 is the
sweep time from 𝑓0 to 𝑓1 and we used 𝑇 = 20 ms in this work. To
suppress clicking noise, known to occur when the speaker output
rapidly fluctuates, we also apply a Hann window to the transmitter
chirp signal [18].

The time of arrival of chirp signals can be computed by the
envelope signal calculated as the cross-correlation between the
transmitted signal and the recorded data. Furthermore, we apply a
smoothing operation to this envelope to eliminate outliers. Each
peak in the smoothed envelope corresponds to the time of arrival
of either the direct or reflected signal.

To determine the appropriate frequency range for the chirp sig-
nal, we investigated the SNR of the direct and reflected signals
in the envelope calculated using three different frequency bands.
Because different speakers may have different optimal frequency
bands, this experiment was evaluated using three speakers: two
tweeters (Fostex FD28D, Fostex PT20K) and one subwoofer (Fos-
tex PW80K). The frequency bands of the transmitted signal were
categorized into three groups: low-frequency band (4 kHz - 7 kHz),
mid-frequency band (10 kHz - 13 kHz), and high-frequency band
(16 kHz - 19 kHz). The experiment setup is the same as the setup
later described in §3.2. Fig. 5a to 5c show the envelopes observed
using FT28D, PT20K, and PW80K speakers, respectively. Fig. 5a and
5b demonstrate that using a chirp signal with a higher frequency
bandwidth as the transmitted signal tends to decrease the SNR of
unwanted reflected signals (orange portion) and improve the SNR
of vertical 𝑛-th-order reflected signals via the floor and ceiling. This
trend is also observed in Fig. 5c, where using a chirp signal with a
mid-frequency bandwidth decreases the SNR of unwanted reflected
signals and improves the SNR of vertical𝑛-th-order reflected signals
compared to using a chirp signal with a low-frequency bandwidth.
However, it is evident in Fig. 5c that using a chirp signal with
a higher frequency bandwidth leads to a decrease in the SNR of
vertical second- and third-order reflected signals (green portion).

Fig. 6 compares the envelope when the speaker is facing the floor
with the envelope when it is facing the microphone. Remarkably,
Fig. 6 shows that when the speaker is facing the floor, the SNR of
vertical third-order or higher reflected signal is higher compared to
when the speaker is facing the microphone, which also supports our
observation that speakers facing the floor enhances vertical higher-
order reflections. Taking these results into account, SyncEcho emits
a higher frequency chirp signal from a speaker facing the floor to
make vertical higher-order reflected signals stand out. Note that
the appropriate frequency band also depends on the speaker.

4.2 Extracting Higher-Order Reflections
The design of the transmitted signal allows us to identify large
peaks in correlation values as potential candidates for vertical 𝑛-th-
order reflections. In this paper, we use cell averaging constant false
alarm rate (CA-CFAR) [29] to detect peaks in correlation values
that are relatively large. Let us denote the time of arrival of the
peak detected by CA-CFAR as 𝜏𝑖 (𝑖 ∈ {0, 1, 2, ...}) (see Fig. 7a). This
value represents one of the potential arrival times for the vertical
𝑛-th-order reflections.

In SyncEcho, it is necessary to determine the times of arrival
of the vertical zeroth- to third-order reflected signals, denoted as
𝑡0 through 𝑡3. Since the direct signal arrives the earliest, we can
readily assume 𝜏0 to be 𝑡0. However, it is challenging to uniquely
determine 𝑡1 to 𝑡3 because other 𝜏𝑖 could potentially be the times of
arrival of other reflections. In this section, we calculate the potential
time windows in which the vertical 𝑛-th-order reflected signals can
arrive based on geometric considerations, thereby narrowing down
the candidate for 𝑡1, 𝑡2, and 𝑡3.

This geometric constraint-based peak filtering reduces the likeli-
hood of incorrect time offset estimates in §4.3 by removing obvi-
ous outliers in advance. This approach is particularly effective in
scenarios with multiple reflections. Additionally, this pre-filtering
improves processing efficiency, reducing the computation time re-
quired for time-offset estimation as we will evaluate in §5.2.3.

4.2.1 General Design of Time Window. We calculate the time win-
dow for 𝑡1 based on 𝑡0 as the reference time. The difference between
𝑡0 and 𝑡1 increases as the microphone approaches the speaker rel-
ative to the 𝑥𝑦 plane and decreases as it moves away. When the
microphone is located directly below the speaker (i.e., when the
microphone is aligned in a straight line with the real speaker and
the first-order virtual speaker), the time difference of arrival has a
maximum value of ( |𝑧′1 − 𝑧 | − (𝑧′0 − 𝑧))/𝑐 = 2𝑧/𝑐 [23]. Therefore,
the time window for 𝑡1 is derived as follows:

0 < 𝑡1 − 𝑡0 ≤ 2𝑧
𝑐

𝑡0 < 𝑡1 ≤ 𝑡0 +
2𝑧
𝑐

Assuming the height of the microphone, 𝑧, to be 𝑧𝑚𝑖𝑛 < 𝑧 < 𝑧𝑚𝑎𝑥 ,
the above inequality can be rewritten as:

𝑡0 < 𝑡1 < 𝑡0 +
2𝑧𝑚𝑎𝑥

𝑐
. (6)

We consider all 𝜏𝑖 that satisfy Eq. 6 as potential candidates for 𝑡1. Let
𝑡
( 𝑗 )
1 ( 𝑗 ∈ {1, 2, ...}) represent one of these candidates. Generally, the
height of the microphone is higher than the floor and lower than
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Figure 5: The envelopes of the received signals observed using (a) FT28D, (b) PT20K, and (c) PW80K.

Figure 6: Comparison of the signal envelope received from
floor-facing and microphone-facing speakers.

the installed speaker, so we can assume 0 < 𝑧 < 𝑧′. Furthermore, if
the user is holding a smartphone built-in microphone, the range of
𝑧 can be further restricted (e.g., 0.7 m < 𝑧 < 1.5 m).

Similar to the time window for 𝑡1, the time windows for 𝑡2 and
𝑡3 are given by:

𝑡0 < 𝑡2 < 𝑡0 +
2ℎ
𝑐
, (7)

𝑡0 < 𝑡3 < 𝑡0 +
2(ℎ + 𝑧𝑚𝑎𝑥 )

𝑐
. (8)

From the above equations, we can obtain the candidates for 𝑡2 and
𝑡3. However, the time windows for 𝑡2 and 𝑡3 are larger compared to
the time window for 𝑡1, resulting in a higher number of candidates
for 𝑡2 and 𝑡3. This significantly increases the possibility of selecting
incorrect times of arrival when finally determining one each for
𝑡2 and 𝑡3 from the pool of candidates. Therefore, we focus on 𝑡1,
which has the smallest number of candidates.

4.2.2 Time Window for 𝑡2. Taking into account the time difference
of arrival between the real speaker and the second-order virtual

speaker, we can express 𝑡2 as a value determined by 𝑑 and 𝑧 as:

𝑐 (𝑡2 − 𝑡0) =
√︃
𝑑2 + (𝑧′2 − 𝑧)2 −

√︃
𝑑2 + (𝑧′0 − 𝑧)2

𝑡2 =
1
𝑐

(√︃
𝑑2+ (𝑧′2− 𝑧)2−

√︃
𝑑2+ (𝑧′0− 𝑧)2

)
+ 𝑡0, (9)

where 𝑧′0, 𝑧
′
2, and 𝑡0 are known values. While there is a range for

𝑧, we only have the information that 𝑑 is greater than or equal
to 0, which prevents us from constraining the time window for
𝑡2. Consequently, we consider representing the aforementioned
equation as a function of 𝑧 using 𝑡1.

Assuming any 𝑡 ( 𝑗 )1 as 𝑡1, the relationship between 𝑑 and 𝑧 can be
derived from the time difference of arrival between the real speaker
and the first-order virtual speaker.

𝑐 (𝑡 ( 𝑗 )1 − 𝑡0) =
√︃
𝑑2 + (𝑧′1 − 𝑧)2 −

√︃
𝑑2 + (𝑧′0 − 𝑧)2

After simplification, the equation can be rewritten as:

𝑑2 = 𝛼𝑧2 − 𝛽, (10)
where

𝛼 =
4𝑧′2 − 𝛾2

𝛾2
, 𝛽 =

4𝑧′2 − 𝛾2

4 , 𝛾 = 𝑐 (𝑡 ( 𝑗 )1 − 𝑡0).

Given that 𝑑2 = 𝛼𝑧2 − 𝛽 ≥ 0, it follows that 𝑧 ≤ −𝛾/2, 𝛾/2 ≤ 𝑧.
Therefore, 𝑧 must satisfy both 𝑧 ≤ −𝛾/2, 𝛾/2 ≤ 𝑧 as well as 𝑧𝑚𝑖𝑛 ≤
𝑧 ≤ 𝑧𝑚𝑎𝑥 . This implies max(𝛾/2, 𝑧𝑚𝑖𝑛) ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥 . By utilizing
Eq. 10, Eq. 9 can be reformulated as a function dependent on 𝑧:

𝑇2 (𝑧) =
1
𝑐

(√︃
𝛼𝑧2−𝛽 + (𝑧′2−𝑧)2 −

√︃
𝛼𝑧2−𝛽 + (𝑧′0−𝑧)2

)
+ 𝑡0 (11)

Therefore, the time window for 𝑡2 is given by:
min
𝑧

𝑇2 (𝑧) < 𝑡2 < max
𝑧

𝑇2 (𝑧) (12)

Fig. 7b shows the general shape of the graph of 𝑇2 (𝑧), and the
specific time windows for 0 ≤ 𝑧 ≤ 𝑧′ (under normal conditions)
and 0.7 ≤ 𝑧 ≤ 1.5 (assuming the user is standing and holding
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Figure 7: (a) Examples of candidates for vertical reflections detected by CA-CFAR. (b) Overview of how the time windows𝑇2 and
𝑇3 are narrowed down. (c) Candidates for 𝑡2 computed by the time window based on 𝑇2.

the microphone). Restricting the microphone’s height effectively
reduces the number of candidates for 𝑡2, as shown in Fig. 7c. We
consider all 𝜏𝑖 that satisfy Eq. 12 as potential candidates for 𝑡2. Let
𝑡
(𝑘 )
2 (𝑘 ∈ {1, 2, ...}) represent one of these candidates.

4.2.3 Time Window for 𝑡3. Similar to 𝑇2 (𝑧), 𝑡3 can be expressed as:

𝑇3 (𝑧) =
1
𝑐

(√︃
𝛼𝑧2−𝛽 + (𝑧′3−𝑧)2 −

√︃
𝛼𝑧2−𝛽 + (𝑧′0−𝑧)2

)
+ 𝑡0

Fig. 7b shows the general shape of the graph of 𝑇3 (𝑧). We consider
all 𝜏𝑖 that satisfy Eq. 13 as potential candidates for 𝑡3. Let 𝑡 (𝑙 )3 (𝑙 ∈
{1, 2, ...}) represent one of these candidates.

min
𝑧

𝑇3 (𝑧) < 𝑡3 < max
𝑧

𝑇3 (𝑧) (13)

4.3 Time-offset Estimation
Finally, we estimate the time offset 𝛿 using the four times of arrival
computed in §4.2. Let the combinations which are constructed from
𝑡0, 𝑡

( 𝑗 )
1 , 𝑡

(𝑘 )
2 , 𝑡

(𝑙 )
3 obtained in §4.2 be C(𝑖 ) . Note that in C(𝑖 ) , 𝑡 (𝑘 )2 and

𝑡
(𝑙 )
3 are values corresponding to the range calculated based on 𝑡 ( 𝑗 )1 ,
and 𝑡0 < 𝑡

( 𝑗 )
1 < 𝑡

(𝑘 )
2 < 𝑡

(𝑙 )
3 is also satisfied.

We apply the least-squares method to Eq. 3 with respect to all
C(𝑖 ) to calculate 𝐽 (𝑖 ) , which is the residual sum of squares (RSS), and
estimate 𝛿 (𝑖 ) . The SyncEcho methodology introduces redundancy
by formulating four equations to solve for three unknowns: 𝛿 , 𝑑 ,
and 𝑧. Consequently, the root sum of squares yields a minimal
value for correct combinations of times of arrival, while producing
a larger value for incorrect combinations. Therefore, the C(𝑖 ) that
minimizes 𝐽 is the correct combination, and its corresponding 𝛿 (𝑖 )
is the estimated time offset.

4.4 Correction of Sampling Clock Offset
Mobile device audio clocks are known to exhibit errors due to
hardware imperfections and temperature variations [33]. A slight
discrepancy between the audio clocks of the speaker and the mi-
crophone can result in clock drift, as shown in Fig. 8a. We operate
under the assumption that this clock drift is linear and employ the
least squares method, using multiple time offset measurements, to
estimate both the initial clock offset and the presumed clock skew.
Fig. 8b demonstrates the clock skew error relative to the number
of measurements. Notably, both the mean error and variance di-
minish when the number of measurements surpasses 20. SyncEcho

Figure 8: (a) Clock drift observed over a 5-minute measure-
ment period, and (b) average and standard deviation of clock
skew errors relative to the number of measurements used in
linear regression.

Figure 9: Experiment setup.

requires a span of five seconds for clock drift correction, given its
capability to conduct four measurements per second.

5 EVALUATION
5.1 Experiment Setup
Fig. 9 shows the basic measurement setup. For the transmission
system, we used a PC (MacBook Pro) to generate audio signals, an
audio interface (ROLAND RUBIX24), an amplifier (Fostex AP20d),
and speakers (Fostex FT28D). The main speaker outputs a chirp
signal in the range of 16 kHz to 19 kHz with a duration of 20 ms,
and the transmission interval 𝐼 was set to 250 ms. For the receiver
(i.e.,microphone), we used a Google Pixel 5 smartphone and set the
sampling rate to 48 kHz. We 16-fold up-sampled the recorded data
and then analyzed the data offline with Mathematica.

To evaluate the performance of the time offset estimation, we
use two speakers: an anchor speaker to estimate the time offset
and a reference speaker for acquiring the ground truth of the time
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Figure 10: SyncEcho was evaluated in five different environments: (a) standard, (b) high-ceiling, (c) narrow-width, (d) carpeted,
and (e) obstructed.

Figure 11: CDFs of (a) time offset and (b) speaker-to-
microphone distance in 𝑥𝑦 plane, for different speaker-
microphone distance.

offset. The reference speaker and the microphone were placed in
close proximity to calculate the ground truth of the time offset.
The signal from the reference speaker arrives at the microphone
immediately, so by observing this timing, the transmission time in
the microphone’s audio clock can be acquired. In reality, there is a
finite gap between the reference speaker and the microphone, so the
propagation time corresponding to this gap (8 mm) is compensated.
In the experiment, the reference speaker first transmits a 10-second
signal so the receiver can calculate the true value, and then, after a
time period of silence, the anchor speaker transmits a signal. The
time offset estimation operation was repeated 100 times for each
configuration.

The experiment was conducted in an environment with a ceiling
height of 2.6mand awidth of 6.3m. The flooringmaterial waswood,
and few obstacles existed in the space, as shown in Fig. 10a. The
𝑧 coordinate of the microphone was set to 1.0 m, and the distance
in the 𝑥𝑦 plane between the speaker and the microphone was set
to 3.0 m. The range of 𝑧 is set to 𝑧𝑚𝑖𝑛 = 0.7 m and 𝑧𝑚𝑎𝑥 = 1.5 m,
assuming the user holds the microphone (i.e., smartphone) in hand.
From the following, the above settings are used unless experimental
settings are explicitly mentioned in each section.

5.2 Basic Estimation Performance
This section evaluates the basic performance of SyncEcho.

Figure 12: CDFs of (a) time offset and (b) speaker-to-
microphone distance on 𝑥𝑦 plane for the three speakers.

5.2.1 Effect of Distance. To evaluate the estimation performance
with different distances, we performed ranging at four distances
between the speaker and the microphone: 1, 3, 5, and 7 m (note
that this is the distance projected on the 𝑥𝑦 plane). Fig. 11a shows
the cumulative distribution functions (CDFs) of the time offset for
the four distances, and the 90th percentile errors were 109, 187,
259, and 706 𝜇s, respectively. Fig. 11b is the CDFs of the distance
between a speaker and a microphone on the 𝑥𝑦 plane, and the 90th
percentile errors were 2.6, 4.5, 7.8, and 29.1 cm, respectively. The
90th percentile errors of the microphone’s height were 1.2, 1.4, 0.9,
and 2.4 cm, respectively. Generally, the estimation error increases
with distance, which can be attributed to the decrease in SNR with
increasing distance.

5.2.2 Speaker Variations. To evaluate how the estimation perfor-
mance changes depending on the speaker, we performed ranging
using three speakers: FT20D, PT20K, and PW20K, which were also
used in §3.2. Fig. 12a shows the CDFs of time offset for the three
speakers. The 90th percentile errors were 187, 259, and 321 𝜇s,
respectively. Fig. 12b shows the CDFs of the distance between a
speaker and a microphone on the 𝑥𝑦 plane. The 90th percentile
errors were 4.5, 3.0, and 13.4 cm, respectively. In addition, the 90th
percentile errors of the microphone’s height were 1.4, 1.2, and
3.0 cm, respectively. The results show that SyncEcho can accurately
estimate time offset using various speakers, and the estimation
performance varies depending on the speaker.
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Table 2: Computation time

𝑧-constraints # of Candidates Time [ms]
None (0 < 𝑧 < 𝑧′) 3 191.5
0.7 m< 𝑧 < 1.5 m 1 155.8

Figure 13: CDFs of time offset (a) for different smartphones
and (b) for different microphone angles.

5.2.3 Computational Efficiency. We use the measurement data
from §5.2.1 (100 trials at 𝑑 = 5 m) to calculate the computation
time per trial. We evaluate this time under two conditions: with
and without constraints on the microphone’s height. Table 2 dis-
plays the average computation time required per trial, along with
the average number of candidate arrival time combinations com-
puted. The acoustic signals are transmitted every 250ms to mitigate
reverberation, and the computation times fall below this 250 ms
threshold, indicating SyncEcho’s computational efficiency. More-
over, as Table 2 shows, constraining 𝑧 successfully enhances this
efficiency.

5.3 Impact of Microphones
5.3.1 Microphone Variation. To evaluate the performance differ-
ences between microphones, we performed time offset estimation
using the Huawei Honor 80 and Apple iPhone 12 mini microphones
as receivers, in addition to the Google Pixel 5 used in all other
experiments. Each smartphone was placed so the microphone faced
the speaker. Fig. 13a shows the CDF of time offsets for the different
smartphones. The 90th percentile errors were 187 (Google Pixel 5),
193 (Huawei Honor 80), and 243 𝜇s (Apple iPhone 12 mini), demon-
strating that SyncEcho can accurately estimate time offset using
various microphones.

5.3.2 Impact of Microphone Angle. To evaluate the impact of the
microphone angle, we estimated the time offset while horizontally
rotating the microphone’s orientation by 45◦ increments. The angle
when the microphone directly faces the speaker is defined as 0◦.
Fig. 13b shows the CDF of time offsets for different microphone
angles. The 90th percentile errors were 56 (0◦), 78 (45◦), 40 (90◦),
and 91 𝜇s (135◦). At 180◦ (i.e., the microphone facing the opposite
direction of the speaker), time offsets couldn’t be computed in all tri-
als within 100 measurements; thus, the results showed large errors.
We observed that the 3rd-order reflection via the floor and ceiling
could not be received at 180◦, likely due to the tripod blocking the
signal. This could also happen when a user holds the smartphone,

Figure 14: CDFs of time offset (a) for different spaces and (b)
for different ambient noise conditions.

indicating a limitation of SyncEcho. However, it was experimentally
confirmed that SyncEcho maintains high accuracy up to 135◦.

5.4 Impact of Spatial Characteristics
To evaluate the impact of spatial characteristics, SyncEcho was
tested in five different environmentswith distinct impulse responses
shown in Fig. 10. The environment shown in Fig. 10a serves as a
baseline, and Fig. 10b to 10e represent high-ceiling, narrow, car-
peted, and obstructed environments, respectively. The speaker
height was set to 2.3 m in the high-ceiling environment and 2.5 m
in the other environments.

Impact of Ceiling Height. To evaluate the impact of ceiling
height, experiments were conducted in a high-ceiling environment
with a ceiling height of 4.0m (see Fig.10b). In this environment, the
propagation distance of reflected signals is longer, which is likely
to decrease the SNR compared to a normal environment. Fig.14a
shows the CDF of time offsets, with the 90th percentile error being
153 𝜇s, indicating that SyncEcho works robustly in high-ceiling
environments.

Impact of Wall Reflections. To evaluate the impact of wall re-
flections, experiments were conducted in a narrow corridor environ-
ment with a width of 3.0 m (see Fig.10c). In this environment, there
is a higher probability of significant influence from reflected signals
off walls compared to a normal environment. Fig.14a shows the CDF
of time offsets, with the 90th percentile error being 199 𝜇s. Despite
the presence of wall reflections due to the short distance between
the microphone, our proposed signal processing pipeline success-
fully removed these reflections, enabling high-accuracy time-offset
estiamtion.

Impact of Floor Material. To evaluate the impact of floor ma-
terial, experiments were conducted in a carpeted environment with
sound-absorbing flooring (see Fig. 10d). In this environment, the
high absorption rate of the floor is likely to decrease the SNR com-
pared to a normal environment. SyncEcho failed in all measure-
mentswithin this environment because the second and higher-order
reflections were sufficiently attenuated, preventing their detection
as peaks.

Impact of Obstacles. To evaluate the impact of obstacles, exper-
iments were conducted in an obstructed environment (see Fig.10e).
In this environment, there is a higher probability of significant
influence from reflected signals off obstacles compared to a normal
environment. Fig.14a shows the CDF of time offsets, with the 90th
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Figure 15: (a) Summary of the three experiments to evaluate
the impact of user movements and (b) mean absolute error
and standard deviation of time offset for each experiment.
(Expt.: Experiment)

percentile error being 218 𝜇s, demonstrating that SyncEcho is less
affected by surrounding obstacles. This is because, compared to
walls, floors, and ceilings, the reflective surfaces of many obstacles
are relatively small, resulting in weaker reflected signal strength.

5.5 Impact of Ambient Noise
To evaluate the impact of ambient noise, we introduced two types
of noise. The first type of noise is a human voice. We asked a
participant to stand at 1 m and 90◦ with respect to the smartphone
and read an article. The second type of noise is music that is played
by an external smartphone. We placed the external smartphone
near the smartphone for SyncEcho and played music. We measured
the sound pressure levels by putting a sound level meter at the
position of the measurement smartphone. In a quiet situation, it
measured 41 dB. Additionally, human voices and music were set to
be approximately 60 dB.

Fig. 14b shows the CDFs of time offset for different ambient noise
conditions. The 90th percentile errors were 187 (quiet), 289 (human
voice), and 304 𝜇s (music), respectively. We observe that adequate
accuracies can be achieved for different ambient noises since the
frequency of human voice and music is usually below 4 kHz [36]
which is much lower than the frequency band adopted for sensing
(i.e., 16 kHz - 19 kHz).

5.6 Impact of User Movements
To evaluate the impact of user movements, three participants (A:
a 1.65 m tall male, B: a 1.63 m tall female, C: a 1.75 m tall male)
conducted three experiments. In all experiments, participants were
instructed to hold the smartphone in a natural position while look-
ing at the screen. Fig. 15a shows the initial positions and movement
paths of the participants in the three experiments. In experiment 1,
participants were asked to be still for 5 seconds. In experiments 2
and 3, participants were asked to move for approximately 5 seconds
in the directions described in Fig. 15a.

Fig. 15b compares the mean absolute error and the standard
deviation of time offset among these three experiments. Fig. 15b
shows that SyncEcho can accurately estimate time offset even when
the user is moving. The reason for the larger standard deviation in
Expt.2 and Expt.3, compared to Expt.1, is likely attributed to the
variation of the distance between the speaker and microphone; the

Figure 16: (a) Configuration of the speaker and microphone
in themeasurement, and (b) CDFs of time offset for SyncEcho
and the baseline.

accuracy at 𝑦 = 5 m was notably lower compared to the 𝑦 = 1 m
(refer to §5.2.1).

5.7 Comparison
We compare the performance of SyncEcho with the method pro-
posed by Lazik et al. [17], which is the closest to our approach using
an unmodified speaker. The four speakers required in their method
are arranged as shown in Fig. 16a at a height of 2.5 m. For a fair
comparison, the same chirp signal (16 kHz - 19 kHz) is transmitted
from all speakers using time division multiple access. Given the
spatial symmetry, microphones are positioned at M1 and M2, as
shown in Fig. 16a. We conducted SyncEcho’s evaluation using only
one speaker.

Fig. 16b compares the CDFs of time offset for SyncEcho and
the approach of Lazik et al. (baseline). The 90th percentile errors
are 82 (SyncEcho, M1), 309 (SyncEcho, M2), and 740 𝜇s (baseline,
M1), respectively. In addition, their approach failed to accurately
estimate the time offset at M2. This is attributed to their reliance on
TDoA localization. When four speakers are installed on the ceiling
(i.e., and the height of all four speakers is the same), the estimation
performance in the vertical direction significantly deteriorates in
TDoA-based localization [1]. Lazik et al. circumvent this problem
by making the height of the speakers and microphones the same,
but this assumption is not usually practical.

These results reveal that our approach using a single speaker
outperforms that of Lazik et al., which requires four speakers.

5.8 ToF Localization
We implemented a ToF localization system based on SyncEcho’s
time offset estimation and evaluated the localization performance.
Our localization setup consisted of two synchronized speakers, as
shown in Fig. 17a, and the user holding a smartphone moved along
a circular path To assess SyncEcho’s pure localization performance,
each speaker sent chirp signals using frequency division multiple
access to minimize signal interference (Speaker 1: 16 kHz to 19 kHz,
Speaker 2: 13 kHz to 16 kHz). The distance between the speakers
was 4.08 m, and the time offset was estimated for 5 s using Speaker
1’s signal at the starting point and leveraged for position estima-
tion. The coordinates (𝑥,𝑦) of the smartphone were estimated by
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Figure 17: (a) Ground truth and SyncEcho-based trajectories
as the user moved in a circular path. (b) CDF of localization
errors, showing a 90th percentile error of 11.0 cm, demonstrat-
ing high accuracy of SyncEcho without dedicated hardware.

applying the least squares method to the following equation:

argmin
𝑥,𝑦

2∑︁
𝑚=1

(√︃
(𝑥 − 𝑥 ′𝑚)2 + (𝑦 − 𝑦′𝑚)2 + (𝑧 − 𝑧′𝑚)2 − 𝑐 (𝑡𝑚 − 𝛿)

)2
,

where 𝛿 and 𝑧 represent the time offset and the smartphone’s height
estimated by SyncEcho, respectively, and (𝑥 ′𝑚, 𝑦′𝑚, 𝑧′𝑚) are the co-
ordinates of speaker𝑚. Additionally, 𝑡𝑚 is the time of arrival of the
direct signal from speaker𝑚, and 𝑐 is the sound speed.

As the ground truth, we used an HTC Vive tracker, which can
achieve mm-level localization accuracy. Fig. 17a shows the trajecto-
ries of the ground truth and SyncEcho-based tracking, and Fig. 17b
shows the CDF of the localization errors. The 90th percentile error
was 11.0 cm. These results demonstrate that SyncEcho can achieve
high-accuracy localization with a few speakers without requiring
dedicated hardware.

6 DISCUSSION AND FUTUREWORK
6.1 Enhancing Accuracy and Robustness
Evaluation results demonstrate that our technique achieves high-
accuracy time offset estimation, with a 90th percentile error of
259 𝜇s at a 5 m distance. Naturally, this estimation performance
declines as the distance between the speaker and the microphone
increases, highlighting an area for future enhancement. Thus, one
route for improvement is to introduce a weighing factor and empha-
size the time offset acquired when the speaker-microphone distance
is smaller.

In terms of robustness, a few incorrect time offset estimation
results were observed when the user was in motion. This happens
because the arrival time of the 𝑛-th reflected signals constantly
changes with user movement, but several constraining factors can
be considered for improvement. Examples of these factors are that
the time offset is close to constant, the speaker-microphone distance
varies continuously (i.e., shouldn’t “jump”), and the height of the
smartphone remains relatively stable when held. It is promising to
leverage these factors to remove outliers and, furthermore, enhance
robustness. Moreover, enhancing localization performance by using
reflections beyond the fourth order is a promising direction for
future research.

6.2 Real-World Deployment
6.2.1 Implementation on Different Devices. SyncEcho can oper-
ate on any device equipped with a single microphone, making it
promising for use in a variety of mobile and IoT devices beyond
smartphones. In implementing SyncEcho on different devices, the
most critical factor when deploying on other devices is the micro-
phone’s characteristics. To this end, we evaluated the performance
of SyncEcho using different microphones in §5.3.1 and confirmed
that they operate with sufficient accuracy. These experimental re-
sults suggest that SyncEcho can be deployed on a wide range of
mobile and IoT devices in the future.

6.2.2 Complex and Noisy Environments. In §5.4 and §5.6, we con-
firmed that SyncEcho performs well in various scenarios, including
those with obstacles and user movement, as long as there is a line-of-
sight (LOS) between the speaker and the microphone. Furthermore,
§5.5 demonstrated that time offset estimation will robustly work
under noisy environments (e.g., talking, playing music) with only a
minor decay in accuracy. These results suggest that SyncEcho will
perform robustly in various real-world scenarios.

Although further non-ideal situations such as non-line-of-sight
(NLOS) conditions and extreme noise can occasionally occur in
practice, the advantage of estimating time offsets for localization is
that it can continuously support localization even if the time offset
is estimated periodically. Thus, exploring system-level designs to
leverage higher-level contexts could improve system robustness.
For example, developing algorithms to seamlessly handle frequent
transitions between LOS and NLOS, or classifying external noise
to apply appropriate denoising algorithms, are potential avenues
for future work.

6.3 Limitations
§5.4 demonstrates that SyncEcho works well in many situations,
such as in high-ceiling rooms, near walls, and around obstacles.
There are, however, specific situations where it may not perform
as effectively, like in rooms made with sound-absorbing materials
or curved ceilings. These are common challenges for all systems
that use reflection-based positioning.

Despite this, one great benefit of SyncEcho is that it can keep
doing ToF localization for tens of minutes without multipath reflec-
tions after it calculates the time offset using a single speaker. This
means that if the device goes into a multipath-rich zone with a sin-
gle speaker once during this time, it can continuously perform ToF
localization regardless of the multipath environment. This benefit
significantly reduces the impact of the above challenges, making
SyncEcho useful in many more conditions.

7 CONCLUSION
This paper proposed SyncEcho, the first approach to estimate the
time offset with a single speaker, by using higher-order reflections.
SyncEcho operates under various conditions, enabling ToF-based
localization. A notable benefit of SyncEcho is that it only requires
a single, unmodified speaker for localization. This feature signifi-
cantly lowers the threshold for incorporating location awareness
into computer systems and will support the emergence of novel
information systems and user interfaces.
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